- Rewrite each pair of fractions so that they have the same denominator as each other.
 - (a) $\frac{1}{5}$
 - (b) $\frac{1}{5}$

 - (d) $\frac{7}{3}$

 - 2

- Calculate the following, simplifying your answer fully:
- (a) $\frac{3}{5} + \frac{2}{5}$ (b) $\frac{2}{3} + \frac{1}{6}$
- (c) $\frac{3}{4} + \frac{4}{5}$ (d) $\frac{5}{4} + 3$

- (e) $1\frac{1}{3} + 1\frac{1}{3}$ (f) $1\frac{1}{3} + 2\frac{1}{4}$

Below is an addition grid. Circle the answers which are incorrect.

+	$\frac{1}{3}$	<u>1</u> 4	<u>1</u> 5
<u>1</u> 3	<u>2</u> 3	<u>2</u> 12	<u>8</u> 15
<u>1</u> 4	<u>7</u> 12	1/2	<u>2</u> 9
<u>1</u> 5	<u>3</u> 15	9 20	<u>2</u> 10

I win some prize money in a competition.

I give $\frac{2}{3}$ of my money to my sister and give $\frac{1}{2}$ of my money to my brother. What fraction of the money do I have left?

Use this empty number line to show why the following calculation is correct.

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Investigate the following sequence of calculations.

$$\frac{1}{2} + \frac{1}{4}$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32}$$

What do you notice about your answers?

Write down the answer to the calculation below, without working: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{1024}$

Create 3 pairs of different fractions which sum to $\frac{3}{5}$

Redo this question using a more efficient strategy.

$$\frac{3}{5} + \frac{3}{10}$$

$$\frac{3}{5} + \frac{3}{10}$$

=

$$=\frac{30}{50}+\frac{15}{50}$$

$$=\frac{43}{50}$$