Sketch the following quadratics, showing the intersection with the axes and the turning point.

$$y = x^2 - 4x + 3$$

Cut x-axis when y = 0

$$y = x^2 - 4x + 3$$

$$x^2 - 4x + 3 = 0$$

$$(x-3)(x-1) = 0$$

$$x = 3$$
 $x = 1$

Roots:

Axis of Symmetry halfway between roots

$$x = \frac{1+3}{2}$$

$$x = 2$$

Cut y-axis when x = 0

$$y = x^2 - 4x + 3$$

$$y = (0)^2 - 4(0) + 3$$

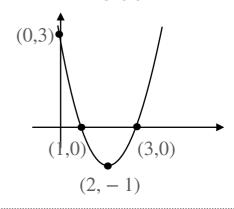
$$y = 3$$

y-intercept:

Decide Shape of Parabola

Positive x2

Turning point


$$y = (2)^2 - 4(2) + 3$$

$$y = 4 - 8 + 3$$

$$y = -1$$

$$(2, -1)$$

Sketch:

 $y = x^2 - 4x - 5$

Cut x-axis when y = 0

Cut y-axis when x = 0

Decide Shape of Parabola

Axis of Symmetry halfway between roots

Turning point

Sketch:

Sketch the following quadratics, showing the intersection with the axes and the turning point.

- $(3) \ y = x^2 6x + 8$
 - *Cut x-axis when y = 0*
- *Cut y-axis when x = 0*
- *Decide Shape of Parabola*

Sketch:

- *Axis of Symmetry halfway between roots*
- *Turning point*

- $(4) \quad y = (x+3)(x-1)$
 - *Cut x-axis when y = 0*
- *Cut y-axis when x = 0*
- *Decide Shape of Parabola*

Sketch:

Axis of Symmetry halfway between roots

Turning point

Sketch the following quadratics, showing the intersection with the axes and the turning point.

- $(5) y = 8x x^2$
 - *Cut x-axis when y = 0*
- *Cut y-axis when x = 0*
- *Decide Shape of Parabola*

Sketch:

Axis of Symmetry halfway between roots

Turning point

- 6 Sketch the following quadratics, showing the intersection with the axes and the turning point.
 - $(A) y = x^2 + 4x$

 - (D) $y = x^2 + 2x 15$

 - $(F) y = -x^2 + 6x + 7$